Obtaining transparent models of chaotic systems with multi-objective simulated annealing algorithms

نویسندگان

  • Luciano Sánchez
  • José Ramón Villar
چکیده

Transparent models search for a balance between interpretability and accuracy. This paper is about the estimation of transparent models of chaotic systems from data, which are accurate and simple enough for their expression to be understandable by a human expert. The models we propose are discrete, built upon common blocks in control engineering (gain, delay, sum, etc.) and optimized both in their complexity and accuracy. The accuracy of a discrete model can be measured by means of the average error between its prediction for the next sampling period and the true output at that time, or ‘one-step error’. A perfect model has zero one-step error, but a small error is not always associated with an approximate model, especially in chaotic systems. In chaos, an arbitrarily low difference between two initial states will produce uncorrelated trajectories, thus a model with a low one-step error may be very different from the desired one. Even though a recursive evaluation (multi-step prediction) improves the fitting, in this work we will show that a learning algorithm may not converge to an appropriate model, unless we include some terms that depend on estimates of certain properties of the model (so called ‘invariants’ of the chaotic series). We will show this graphically, by means of the reconstructed attractors of the original system and the model. Therefore, we also propose to follow a multi-objective approach to model chaotic processes and to apply a simulated annealing-based optimization to obtain transparent models. 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

َA Multi-objective simulated annealing algorithm to solving flexible no-wait flowshop scheduling problems with transportation times

This paper deals with a bi-objective hybrid no-wait flowshop scheduling problem minimizing the makespan and total weighted tardiness, in which we consider transportation times between stages. Obtaining an optimal solution for this type of complex, large-sized problem in reasonable computational time by using traditional approaches and optimization tools is extremely difficult. This paper presen...

متن کامل

A Comparison of Four Multi-Objective Meta-Heuristics for a Capacitated Location-Routing Problem

In this paper, we study an integrated logistic system where the optimal location of depots and vehicles routing are considered simultaneously. This paper presents a new mathematical model for a multi-objective capacitated location-routing problem with a new set of objectives consisting of the summation of economic costs, summation of social risks and demand satisfaction score. A new multi-objec...

متن کامل

SECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...

متن کامل

Few heuristic optimization algorithms to solve the multi-period fixed charge production-distribution problem

This paper deals with a multi-period fixed charge production-distribution problem associated with backorder and inventories. The objective is to determine the size of the shipments from each supplier and backorder and inventories at each period, so that the total cost incurred during the entire period towards production, transportation, backorder and inventories is minimised. A 0-1 mixed intege...

متن کامل

Comparison of Simulated Annealing, Genetic, and Tabu Search Algorithms for Fracture Network Modeling

The mathematical modeling of fracture networks is critical for the exploration and development of natural resources. Fractures can help the production of petroleum, water, and geothermal energy. They also greatly influence the drainage and production of methane gas from coal beds. Orientation and spatial distribution of fractures in rocks are important factors in controlling fluid flow. The obj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 178  شماره 

صفحات  -

تاریخ انتشار 2008